世界杯正规买球app排行-(中国)科技有限公司

世界杯正规买球app排行

论文交流

2018年高考全国Ⅰ卷理科数学第21题的若干思考

发布时间:2019-06-16 作者:黄顺进 黄耿跃 发布者:李宝尚 阅读 : 3744

2018年高考全国卷理科数学第21题的若干思考

黄顺进  世界杯正规买球app排行(362321

黄耿跃  福建省厦门实验世界杯正规买球app排行(361000

一、试题呈现

 

二、初步分析

题目所给的函数是由反比函数、正比例函数、对数函数三个基本初等函数通过四则运算组合而成,给考生的感觉是题干简洁,看了就会想往下做,具有一定的亲和力.第一问讨论函数的单调性,中等生基本能拿到分数,第二问证明不等式,对考生的思维能力、运算能力等要求较高,且要懂得利用第(1)问的结论,敢于代入不等式的左边进行化简,才能顺利求证不等式.

三、第()问错误解法的思考

 

四、试题第()问多种解法的思考

 

 

解法三:利用函数的单调性

 

解法四:利用整体换元构造函数

 

五、试题题源的思考

 

笔者以为,不能因为找到了高考题的题源,就认为高考出这种题目水平太低了,而是要深入地去反思?为什么高考敢这样考?笔者认为,这种题目是经典题,它蕴含着很多数学的思想方法,是可以区分不同思维层次的考生,所以高考敢于用推陈出新命题手法命制试题,这应该引起一线世界杯正规买球app排行的重视.

六、对函数与导数中双元问题的复习思考

17世纪,数学的发展突飞猛进,实现了从常量数学到变量数学的转折.变量数学又经历了单变量到多变量的发展变化.应该说世界杯正规买球app排行阶段在研究变量问题时,更主要的还是以单变量问题为主.所以,这就给了我们求解双变量问题的启发,即:想方法设法把双元问题通过换元或其它方法,转化成单变量问题,才能进行问题求解.事实上,本文提供的四种方法的本质都是转化成构造单变量函数问题.

 

 

注:本文发表于《福建世界杯正规买球app排行数学》2019年第1

返回顶部 打印 关闭

友情链接:小偷程序  镜像站群